4.6 Article

Thermal Evolution of Cation Distribution/Crystallite Size and Their Correlation with the Magnetic State of Yb-Substituted Zinc Ferrite Nanoparticles

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 23, Pages 12358-12365

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp403459t

Keywords

-

Funding

  1. Serbian Ministry of Education and Science [III45015]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]
  3. U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]

Ask authors/readers for more resources

Evolution of the structural and magnetic properties of ZnFe1.95Yb0.05O4 nanoparticles, prepared via a high-energy ball milling route and exposed to further thermal annealing/heating, was assessed in detail and correlation of these properties explored. inversion, heating of the sample to similar to 500 degrees C is found to rapidly alter the cation distribution from mixed to normal, in agreement with the known cation preferences. Under the same conditions the crystallite size only slowly grows. By further thermal treatment appreciably. An interrelationship among the lattice parameter, octahedral site occupancy, and crystallite size has been established. The observations are (a) both the site occupancy of Fe3+ at octahedral 16d spinel sites (N-16d(Fe3+)) and the cubic lattice parameter rapidly increase with an initial increase of the crystallite size, (b) the lattice parameter increases with increasing occupancy, N-16d(Fe3+), and (c) there appears to be a critical nanoparticle diameter (approximately 15 nm) above which both the site occupancy and lattice parameter values are saturated. The magnetic behavior of the annealed samples appears to be correlated to the evolution of both the cation distribution and crystallite size, as follows. As-prepared samples and those annealed at lower temperatures show superparamagnetic behavior at room temperature, presumably as a consequence of the Fe3+ distribution and strong Fe3+(8a)-O-Fe3+(16d) superexchange interactions. Samples with a nanopartide diameter greater than 12 nm and with almost normal distributions exhibit the paramagnetic state. The coercive field is found to decrease with an increase of the crystallite size. Partial Yb3+/Fe3+ substitution is found to increase the inversion parameter and saturation magnetization. Detailed knowledge of the thermal evolution of structural/microstructural parameters allows control over the cation distribution and crystallite size and hence the magnetic properties of nanoferrites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available