4.6 Article

Spectroelectrochemical Photoluminescence of Trap States of Nanocrystalline TiO2 in Aqueous Media

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 26, Pages 13654-13662

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp402264p

Keywords

-

Funding

  1. National Science foundation [CHE-1149013]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [1149013] Funding Source: National Science Foundation

Ask authors/readers for more resources

Trap state photoluminescence of nanocrystal-line TiO2 electrodes is investigated as a function of applied bias and pH in aqueous electrolyte. Films composed of the anatase polymorph reveal an increase in a broad red emission at increasingly negative potentials, with an onset about 200 mV positive of the pH-dependent literature value of the conduction band potential, followed by conversion to the green emission characteristic of hole traps at more negative bias. Green photoluminescence is the only emission seen from mixed phase (P25, anatase/rutile) films at any applied potential, while red-emitting electron traps in P25 appear to be quenched by electron transfer to rutile hole traps. The influence of surface treatment by TiCl4 is investigated for both anatase and P25 in order to shed light on the mechanism by which this treatment improves the performance of TiO2-based solar cells. Our results reveal the difference between trap state distributions of P25 and anatase nanoparticles and address the molecular basis for red and green emitting traps. The results establish the redox potentials of the traps as a function of pH and reveal the breadth of their energetic distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available