4.6 Article

Mechanical Strain of Chemically Functionalized Chemical Vapor Deposition Grown Graphene

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 117, Issue 6, Pages 3152-3159

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp311997j

Keywords

-

Funding

  1. JSPS [GR075]
  2. Grants-in-Aid for Scientific Research [22310060] Funding Source: KAKEN

Ask authors/readers for more resources

Chemical functionalization and mechanical strain of graphene are both important for the optimization of flexible electronic devices as both can alter the electronic structure of graphene. Here, we investigate the combined effects of covalent aryl diazonium functionalization and mechanical strain on graphene by Raman spectroscopy. Raman spectroscopy provides a wealth of information regarding the electronic structure of graphene and can be easily applied to flexible device architectures. The use of chemical vapor deposition (CVD) grown polycrystalline graphene is found to exhibit increased reactivity toward diazonium functionalization. This is attributed to the increased reactivity of defects predominantly present along domain boundaries. Functionalization with nitrobenzene diazonium molecules causes p-type doping to occur in the CVD graphene. The combined effects of mechanical strain and chemical functionalization on the graphene are also investigated. The Raman peak width is affected because of phonon splitting when under strain as well as an increase in frequency because of doping. Interestingly, we also observe a decrease in the I-D/I-G ratio when strain is applied to the chemically functionalized graphene indicating a possible morphological change to the surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available