4.6 Article

Stable Hydrogen Storage Cycling in Magnesium Hydride, in the Range of Room Temperature to 300 °C, Achieved Using a New Bimetallic Cr-V Nanoscale Catalyst

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 116, Issue 4, Pages 3188-3199

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp211254k

Keywords

-

Funding

  1. NSERC Hydrogen Canada (H2CAN) Strategic Research Network
  2. NINT NRC

Ask authors/readers for more resources

We created a bimetallic chromium vanadium hydrogen sorption catalyst for magnesium hydride (MgH2). The catalyst allows for significant room-temperature hydrogen uptake, over 10 cycles, at absorption pressures as low as 2 bar. This is something that has never been previously achieved. The catalyst also allowed for ultrarapid and kinetically stable hydrogenation cycling (over 225 cycles) at 200 and at 300 degrees C. Transmission electron microscopy analysis of the postcycled samples revealed a nanoscale dispersion of Cr-V nanocrystallites within the Mg or MgH2 matrix. TEM analysis of the partially absorbed specimens revealed that even at a high absorption pressure, that is, a high driving force, relatively few hydride nuclei are formed at the surface of the pre-existing magnesium, ruling out the presence of any contracting volume (also termed contracting envelope or core shell) type growth. HRTEM of the cycled and desorbed powder sample demonstrated that the bcc Cr-V phase is crystalline and nanoscale. We experimentally demonstrated that the activation energy for hydrogen absorption is not constant but rather evolves with the driving force. This finding sheds new insight regarding the origins of the wide discrepancy in the literature - reported values of the hydrogenation activation energy in magnesium hydride and in related metal hydride systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available