4.6 Article

Role of the Functionalization of the Gold Nanoparticle Surface on the Formation of Bioconjugates with Human Serum Albumin

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 116, Issue 18, Pages 10430-10437

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp3021497

Keywords

-

Funding

  1. Ministerio de Ciencia e Innovacion (MICINN) Junta de Andalucia [CTQ2010-16137]
  2. University of Cordoba

Ask authors/readers for more resources

The protein-gold nanoparticle bioconjugates are playing an important role in the studies of biological systems. The nature of the interaction and the magnitude of the binding affinity together with the conformational changes in the protein upon binding are the most addressed topics in relation to the uses of the bioconjugates in different organisms. In this work, we study the human serum albumin (HSA) protein-gold nanoparticle (AuNP) interactions focusing on the nature of the gold nanoparticle surface modification. We have found that the interactions of the HSA with the AuNPs are mainly electrostatic and that the concentration of protein necessary to stabilize the conjugates decreases when the overall negative charge on the nanoparticle surface increases. The changes in the localized surface plasmon resonance (LSPR) signals of the gold nanoparticles (13 nm diameter) are used to determine the number of protein molecules necessary to stabilize the conjugates in a high ionic strength medium. Fluorescence spectroscopy (stationary and time-resolved) is used to characterize the different bioconjugates and determine the binding constants under different experimental conditions. Moreover, the use of an extrinsic fluorescence probe (1-anilino-8-naphthalenesulfonic acid, ANS) gives us some information about the existence of partial unfolding of the protein upon binding to the nanoparticle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available