4.6 Article

Tuning the Electronic and Magnetic Properties of MoS2 Nanoribbons by Strain Engineering

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 116, Issue 21, Pages 11752-11757

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp3015782

Keywords

-

Ask authors/readers for more resources

First-principles calculations are carried out to study the effects of strain on the electronic and magnetic properties of MoS2 nanoribbons. We predict that MoS2 nanoribbons are stretchable up to a strain of 10%. The band structures of the nonmagnetic armchair MoS2 nanoribbons change from direct character to indirect with the increase of strain due to the shift of the energy states near the Fermi level. The ferromagnetic states of metallic zigzag MoS2 nanoribbons are greatly improved because the energy difference between the nonmagnetic and magnetic states is increased up to 4.9 times, and the magnetic moments are increased up to 2 times under a strain up to 10%. Our calculations show that the electronic and magnetic properties of MoS2 nanoribbons can be controlled by applying strain, indicating their potential applications to spintronics and photovoltaic cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available