4.6 Article

Effect of Tin Doping on α-Fe2O3 Photoanodes for Water Splitting

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 116, Issue 29, Pages 15290-15296

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp305221v

Keywords

-

Funding

  1. National Institute of Standards and Technology American Recovery and Reinvestment Act Measurement Science and Engineering Fellowship through the University of Maryland [70NANB10H026]

Ask authors/readers for more resources

Sputter-deposited films of alpha-Fe2O3 of thickness 600 nm were investigated as photoanodes for solar water splitting and found to have photocurrents as high as 0.8 mA/cm(2) at 1.23 V vs the reversible hydrogen electrode (RHE). Sputter-deposited films, relative to nanostructured samples produced by hydrothermal synthesis,(1,2) permit facile characterization of the role and placement of dopants. The Sn dopant concentration in the alpha-Fe2O3 varies as a function of distance from the fluorine-doped tin oxide (FTO) interface and was quantified using secondary ion mass spectrometry (SIMS) to give a mole fraction of cations of approximately 0.02% at the electrolyte interface. Additional techniques for determining dopant density, including energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), electrochemical impedance spectroscopy (EIS), and conductivity measurements, are compared and discussed. Based on this multifaceted data set, we conclude that not all dopants present in the alpha-Fe2O3 are active. Dopant activation, rather than just increasing surface area or dopant concentration, is critical for improving metal oxide performance in water splitting. A more complete understanding of dopant activation will lead to further improvements in the design and response of nanostructured photoanodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available