4.6 Article

Selectivity Tailoring in Liquid Phase Oxidation Over MWNT-Mn3O4 Nanocomposite Catalysts

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 115, Issue 31, Pages 15440-15448

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp203318n

Keywords

-

Funding

  1. Council of Scientific and Industrial Research (CSIR)

Ask authors/readers for more resources

Highly selective multiwalled nanotubes (MWNT)-Mn3O4 nano-composite catalyst was designed for liquid phase oxidation of p-cresol, which gave highest selectivity of 90% to the first step oxidation product, p-hydroxy benzyl alcohol. Mn3O4 nanoparticles and MWNT-Mn3O4 nanocomposites were synthesized by coprecipitation route using mixed precursors under controlled conditions. The phase purity of Mn3O4 and the formation of MWNT-Mn3O4 nanocomposites were confirmed by X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. High-resolution transmission electron microscopy revealed the selective exposure of (101) and (001) planes of Mn3O4 nanoparticles in the MWNT-Mn3O4 composite, while lowering in oxidizing capacity of MWNT-Mn3O4 nanocomposite confirmed by cyclic voltametry was due to incorporation of electron rich MWNT. Thus, selectivity tuning of the new material (MWNT-Mn3O4 nanocomposite) was found to be due to alteration in both geometric as well as electronic properties. A plausible reaction pathway also has been proposed involving the predominant role of nucleophilic lattice oxygen (O2-) species due to exposure of particular crystal planes giving highest selectivity to p-hydroxy benzyl alcohol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available