4.6 Article

Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 115, Issue 1, Pages 118-124

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp110313b

Keywords

-

Funding

  1. DST
  2. CSIR
  3. Ramanujan Fellowship

Ask authors/readers for more resources

We demonstrate the surface defect-related luminescence properties of SnO2 nanorods and nanoparticles using steady-state and time-resolved spectroscopy. Defect-related bands are identified by Raman and EPR spectroscopy. On the basis of the experimental results, we propose a schematic model for different relaxation processes in SnO2 nanocrystals upon photoexcitation. Analysis suggests that the visible emission of SnO2 nanocrystals is due to a transition of an electron from a level close to the conduction band edge to a deeply trapped hole in the bulk (Vo) of the SnO2 nanocrystals. Analysis suggests that the surface-related defects are more prominent in smaller nanocrystals than in nanorods. It is found that the PL emission and decay time strongly depend on the shape of the nanocrystals. This proposed model is further confirmed by time-resolved spectroscopy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available