4.6 Article

Mono layer-Capped Cubic Platinum Nanoparticles for Sensing Nonpolar Analytes in Highly Humid Atmospheres

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 33, Pages 14042-14049

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp105810w

Keywords

-

Funding

  1. European Commission [1006752]
  2. Technion's Russell Berrie Nanotechnology Institute [76517704/14]

Ask authors/readers for more resources

We report on the feasibility of cubic Pt nanoparticles (NPs) capped with four representative organic ligands, viz. oleylamine (ODA), 11-mercaptoundecanol, 11-mercaptoundecanoic acid, and benzylmercaptan, for sensing gaseous nonpolar analytes in humid atmospheres. Chemiresistors based on cubic Pt NPs with nonpolar ligands show a very large increase in resistance upon exposure to nonpolar analyte vapors, combined with a low sensitivity to polar analyte vapors, especially to water. The sensing mechanism can be understood in terms of analyte-induced changes in the NP-NP core distance and changes in the permittivity of the medium between the NPs. The sensing capabilities of the Pt NP chemiresistors for nonpolar molecules in highly humid atmospheres are demonstrated by dosing an ODA-capped cubic Pt NP sensor with air mixtures containing low octane concentrations and high humidity levels that are typical for many applications. The simple construction, low cost, stability, fast response, and high sensitivity to nonpolar molecules, together with the low sensitivity to water vapor, are promising features for sensing applications in real confounding atmospheres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available