4.6 Article

Controlling the Decomposition Pathway of LiBH4 via Confinement in Highly Ordered Nanoporous Carbon

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 33, Pages 14036-14041

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp1055045

Keywords

-

Funding

  1. U.S. Department of Energy through office of Energy Efficiency and Renewable Energy

Ask authors/readers for more resources

The wetting and decomposition behavior of LiBH4 has been investigated in the presence of highly ordered nanoporous hard carbon (NPC) with hexagonally packed 2 nm diameter columnar pores. Calorimetry, X-ray diffraction, and IR spectroscopy measurements confirm that the LiBH4 within the pores is amorphous. The confinement of LiBH4 in such small pores results in the disappearance of the low-temperature structural phase transition, the melting transition, and also the significant decrease of the onset desorption temperature from 460 to 220 degrees C with respect to bulk LiBH4, a lower temperature than observed in larger pore sizes in the literature. Most importantly, our results suggest that diborane release is suppressed or eliminated in the decomposition of noncrystalline LiBH4. Tight nanoconfinement may therefore mitigate both safety concerns and loss of active material in borohydride-based hydrogen storage systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available