4.6 Article

Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 49, Pages 21775-21785

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp1054809

Keywords

-

Funding

  1. Evonik Degussa GmbH via an ARC

Ask authors/readers for more resources

The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C(4)mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity. Lithium cycling in symmetrical cells using a C(4)mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g(-1) are achieved in a Li-LiFePO4 battery at 85 degrees C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C(4)mmor with lithium metal. In contrast, the SET derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C(4)mmor-derived SEI Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C(4)mmor FSI electrolyte.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available