4.6 Article

Diffusion of Atomic Oxygen on the Si(100) Surface

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 29, Pages 12649-12658

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp102998y

Keywords

-

Funding

  1. Chemical Sciences Division, Basic Energy Sciences, U.S. Department of Energy
  2. Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-01ER15228]

Ask authors/readers for more resources

The processes of etching and diffusion of atomic oxygen on the reconstructed Si(100)-2 x 1 surface are investigated using an embedded cluster QM/MM (Quantum Mechanics/Molecular Mechanics) method, called SIMOMM (Surface Integrated Molecular Orbital Molecular Mechanics). Hopping of an oxygen atom along the silicon dimer rows on a Si15H16 cluster embedded in an Si136H92 MM cluster model is studied using the SIMOMM/UB3LYP (unrestricted density functional theory (UDFT) with the Becke three-parameter Lee Yang Parr (B3LYP) hybrid functional) approach, the Hay-Wadt effective core potential, and its associated double-zeta plus polarization basis set. The relative energies at stationary points on the diffusion potential energy surface were also, obtained with three coupled-cluster (CC) methods, including the canonical CC approach with singles, doubles, and noniterative quasi-perturbative triples (CCSD(T)), the canonical left-eigenstate completely renormalized (CR) analogue of CCSD(T), termed CR-CC(2,3), and the linear scaling variant of CR-CC(2,3) employing the cluster-in-molecule (CIM) local correlation ansatz, abbreviated as CIM-CR-CC(2,3). The pathway and energetics for the diffusion of oxygen from one dimer to another are presented, with the activation energy estimated to be 71.9 and 74.4 kcal/mol at the canonical CR-CC(2,3)/6-31G(d) and extrapolated, OM-based, canonical CR-CC(2,3)/6-311G(d) levels of theory, respectively. The canonical and CIM CR-CC(2,3)/6-31G(d) barrier heights (excluding zero point vibrational energy contributions) for the etching process are both 87.3 kcal/mol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available