4.6 Article

Temperature-Dependent Infrared Spectroscopy of Proton-Conducting Hydrated Perovskite BaInxZr1-xO3-x/2 (x=0.10-0.75)

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 13, Pages 6177-6181

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp910307u

Keywords

-

Funding

  1. Swedish Research Council
  2. Swedish National Graduate School in Materials Science

Ask authors/readers for more resources

We investigate the temperature dependence of the O-H stretch band in the infrared absorbance spectra of the proton-conducting hydrated perovskites BaInxZr1-xO3-x/2 (x = 0.10-0.75) over the temperature range -160 to 350 degrees C. Upon increasing temperature from -160 to 30 degrees C, we show that there is a redistribution of protons from nonsymmetrical structural configurations, such as Zr-OH-In and Zr-OH-Zr-vacancy, where the degree of hydrogen bonding between the protons and neighboring oxygens is strong, to symmetrical configurations, such as Zr-OH-Zr and In-OH-In, where hydrogen bonding is weaker. Spectra measured at elevated temperatures, 30-350 degrees C, indicate preferential desorption of protons in sites where the degree of hydrogen bonding is strong, and show that the materials gradually dehydrate with increasing temperature. The dehydration rate is found to be highest in the temperature range 275-325 degrees C. Furthermore, the spectroscopic results indicate that strong hydrogen bonding, caused by dopant-induced short-range structural distortions, is favorable for high proton mobility and that the rate-limiting step in the conduction mechanism is the proton transfer between neighboring oxygens.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available