4.6 Article

Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 TiO2 Nanotube Arrays

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 113, Issue 37, Pages 16394-16401

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp905247j

Keywords

-

Funding

  1. National Natural Science Foundation of China [50625208, 20773097, 20877061]
  2. National Basic Research Program of China [2007CB613302, 2009CB939704]

Ask authors/readers for more resources

Conventional TiO2 photocatalyst possesses excellent activities and stabilities, but requires near-ultraviolet (UV) irradiation (about 4% of the solar spectrum) for effective photocatalysis, thereby severely limiting its practical application. It is highly desirable to develop a photocatalyst that can use visible light in high efficiency under sunlight irradiation. In this work, we prepare new visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays (NTs) by depositing AgCl nanoparticles (NPs) into the self-organized TiO2 NTs, and then reducing partial Ag+ ions in the surface region of the AgCl particles to Ag-0 species under xenon lamp irradiation. The prepared metal-semiconductor nanocomposite plasmonic photocatalyst exhibits a highly visible-light photocatalytic activity for photocatalytic degradation of methyl orange in water and stability. A new plasmonic photocatalytic mechanism, which is proposed on the basis of the fact that the Ag NPs are photoexcited due to plasmon resonance and charge separation, is accomplished by the transfer of photoexcited electrons from the Ag NPs to the TiO2 conduction band and the simultaneous transfer of compensative electrons from a donor (Cl-) to the Ag NPs. The proposed mechanism is further confirmed by the experiments of hydroxyl radical and transient photocurrent response. The prepared photocatalysts are also of great interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology. This study may provide new insight into the design and preparation of advanced visible-light photocatalytic materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available