4.6 Article

Strong Modification of Quantum Dot Spontaneous Emission via Gap Plasmon Coupling in Metal Nanoslits

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 114, Issue 16, Pages 7269-7273

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp9083376

Keywords

-

Funding

  1. DOE [F49550-04-10437]
  2. Samsung

Ask authors/readers for more resources

A metal-dielectric-metal (MDM) waveguide with a nanoscale gap supports highly confined surface plasmon-polariton modes, termed gap plasmons. The spontaneous emission of an emitter placed in such a metal nanogap is expected to be strongly modi fled due to coupling to gap plasmons. We investigate the light emission properties of semiconductor quantum dots (QD) in a metal nanoslit, which is a truncated MDM waveguide. More specifically, we measure both the lifetime and the state of polarization of the out-coupled QD emission from a metal nanoslit. We observe clear lifetime and polarization changes of QD emission. As the slit width gets smaller, the QD exciton lifetime gradually decreases, and its emission becomes polarized normal to the slit, as expected for gap plasmon coupled light emission. We also find that the polarization of the collected QD emission is flipped (i.e., becomes parallel to a slit) when the excited emitters are located just outside the slit. We have conducted dipole emission calculations in metal nanoslits, and these explain the experimentally observed lifetime and polarization changes well. These findings may have novel applications in nanoscale optical sources, sensors, and active devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available