4.6 Article

One-Dimensional Ceria as Catalyst for the Low-Temperature Water-Gas Shift Reaction

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 113, Issue 52, Pages 21949-21955

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp9066444

Keywords

-

Funding

  1. U.S. DOE [DE-AC02-98CH10886]
  2. DOE [DE-FG05-89ER45384, DE-AC02-76CH00016]

Ask authors/readers for more resources

Synchrotron-based in Situ time-resolved X-ray diffraction and X-ray absorption spectroscopy were used to study pure ceria and Pd-loaded ceria nanotubes and nanorods (1D-ceria) as catalysts for the water-gas shift (WGS) reaction. While bulk ceria is very poor as WGS catalysts, pure I D-ceria displayed catalytic activity at a temperature as low as 300 degrees C. The reduction of the pure ID-ceria in pure hydrogen started at 150 degrees C, which is a much lower temperature than those previously reported for the reduction of 3D ceria nanoparticles. This low reduction temperature reflects the novel morphology of the oxide systems and may be responsible for the low-temperature WGS catalytic activity seen for the 1D-ceria. Pd-loaded 1D ceria displayed significant WGS activity starting at 200 degrees C. During pretreatment in H(2), the ceria lattice parameter increased significantly around 60 degrees C, which indicates that Pd-oxygen interactions may facilitate the reduction of Pd-loaded 1D-ceria. Pd and ceria both participate in the formation of the active sites for the catalytic reactions. The low-temperature hydrogen pretreatment results in higher WGS activity for Pd-loaded 1D-ceria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available