4.6 Article

A Multifrequency EPR Study on Organic-Capped Anatase TiO2 Nanocrystals

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 113, Issue 15, Pages 6221-6226

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp8111765

Keywords

-

Funding

  1. Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR)
  2. EC [STRP 013619]
  3. Apulia Region within the Scientific Research Framework Program [PE049]

Ask authors/readers for more resources

A multifrequency electron paramagnetic resonance, EPR, study has been carried out on TiO2 nanocrystals (NCs) capped by organic moieties prepared according to both a nonhydrolytic and a hydrolytic procedure, respectively, with spherical or rodlike shape. In particular, EPR measurements have been performed in the 9-95 GHz range, at various temperatures, and with and without UV irradiation. The behavior of the electrons promoted in the conduction band by UV irradiation and of the holes in the valence band has been monitored by means of the generated paramagnetic species that are detectable by EPR, thus enabling the identification of the different sites at which the charges are trapped. In particular, an EPR signal which can be considered a mark of the localization of the photoinduced charge on a carbon of the capping molecule is observed. The presence of paramagnetic species on the surfaces of TiO2 NCs has been used to account for the catalytic performance of such a class of nanostructured material which has been recently proven to present a high catalytic efficiency. The observed carbon radical is suggested to be responsible for the higher catalytic activity of organic capped nanosized catalysts. Indeed, upon irradiation, the intensity of this signal with respect to the bulk Ti3+ signal is larger in the NCs characterized by higher photocatalytic activity; namely, those prepared with a hydrolytic procedure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available