4.6 Article

Development of Anion Stereoselective, Activated Carbon Molecular Sieve Electrodes Prepared by Chemical Vapor Deposition

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 113, Issue 17, Pages 7316-7321

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp811283b

Keywords

-

Ask authors/readers for more resources

The electrochemical properties of nanoporous, activated carbon cloth electrodes in NaCl and NaNO3 solutions were investigated before and after carbon chemical vapor deposition (CVD) on the high surface area of nanoporous carbon samples. Different CVD reagents, temperatures, and pressures were employed. We achieved a sharp ion sieving effect for CDV-treated carbon samples/electrodes by selecting a given CVD reagent (namely, benzene) and a temperature that was too low to affect chemical decomposition of benzene in the gaseous phase, but sufficiently high to enable its decomposition on the outer surface of the carbon substrate, to form surface carbon deposits. The electroadsorption stereo selectivity achieved by optimized CVD treatment was so sharp that clear discrimination could be obtained even between anions of very similar dimensions, such as Cl- and NO3-. Here, the nitrate behaves as the smaller entity since, being a planar ion, it fits better into the carbon micropores known to have slit-shaped pores. The CVD treatment affects mainly the mouths of the pores and not their interior/volume. This was proven by adsorption experiments. From the gas phase, the stereoselectivity obtained by these CVD treatments was also demonstrated by discrimination between the adsorption Of CO2 and N-2 into the CVD-treated activated carbon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available