4.6 Article

Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 13, Pages 4849-4854

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp077445v

Keywords

-

Ask authors/readers for more resources

A novel composite of multiwalled carbon nanotubes (MWNTs) and molecularly imprinted polymers (MIPs) was prepared by using dopamine (DA) as a template molecule. Selective copolymerization of methacrylic acid and trimethylolpropane trimethacrylate (copoly(MAA-co-TRIM)) in the presence of DA was achieved at the vinyl group functionalized MWNT surface. Vinyl groups modified on MWNTs surface are a key factor for the formation the composite of MWNTs-MIPs. Attenuated total reflection Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and thermogravimetric analysis were used to characterize the composite structure and determine the grafted MlPs quantities in the composite. The properties such as adsorption dynamics, special binding, and selective recognition capacity were evaluated. The results demonstrated that MWNTs-MIPs not only possessed a rapid dynamic adsorption but also exhibited a high selectivity toward DA, compared to epinephrine. The electrochemical sensor fabricated by modifying MWNTs-MIPs on the glassy carbon electrode could recognize DA from ascorbic acids (AA), indicating DA Could be detected in the presence of AA. And the modified electrode was used to detect the concentration of DA with a linear range of 5.0 x 10(-7) to 2.0 x 10(-1) mol/L.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available