4.6 Article

Au Nanoparticle-Based Surface Energy Transfer Probe for Conformational Changes of BSA Protein

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 46, Pages 17945-17951

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp806866r

Keywords

-

Funding

  1. The Department of Science and Technology (NSTI)
  2. Ramanujan Fellowship
  3. CSIR

Ask authors/readers for more resources

In the present study, Au nanoparticle based surface energy transfer (SET) has been used to measure conformational changes in proteins. A significant photoluminescence (PL) quenching (91-97%) of tryptophan intensities of bovine serum albumin (BSA) protein is observed in the presence of Au nanoparticles, and the measured distances (r) between the donor (tryptophan) and the acceptor (Au nanoparticle) are 27.0, 22.9, and 25.7 angstrom for E, N, and B forms of BSA protein, respectively. Results indicate that Au nanoparticle quenches BSA fluorescence mainly through a static quenching mechanism. Analysis suggests that binding constant and bound/unbound ratio varies with changing the conformation of protein. The PL quenching of dye varies from 47.2 to 86.6% with changing the conformation of protein without changing the radiative rate of dye. The measured distances (d) between the donor (dye) and the acceptor (Au nanoparticle) are 116.5, 76.1, and 86.4 angstrom for E, N, and B forms of BSA protein, respectively, using the efficiency of surface energy transfer (SET) which follows 1/d(4) distance dependence. The estimated radii of different conformations of the protein nicely match with the reported values of hydrodynamic radii of different conformations of BSA protein. Therefore, such bioconjugated Au nanoparticle based surface energy transfer should have great potentials for optical-based molecular ruler.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available