4.6 Article

Systematic computational study of the effect of silver nanoparticle dimers on the coupled emission from nearby fluorophores

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 30, Pages 11236-11249

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp802414k

Keywords

-

Funding

  1. NHGRI NIH HHS [R01 HG002655, R01 HG002655-02, R01 HG002655-04A1, R01 HG002655-05, R01 HG002655-03, R01 HG002655-01, R01 HG002655-06] Funding Source: Medline
  2. NIBIB NIH HHS [R01 EB006521, R01 EB000682-05, R01 EB006521-02, R01 EB000682-02, R01 EB006521-03, R01 EB000682, R01 EB000682-03, R01 EB000682-04, R01 EB006521-01A1, R01 EB000682-01] Funding Source: Medline

Ask authors/readers for more resources

We use the finite-difference time-domain method to predict how fluorescence is modified if the fluorophore is located between two silver nanoparticles of a dimer system. The fluorophore is modeled as a radiating point dipole with orientation defined by its polarization. When a fluorophore is oriented perpendicular to the metal surface, there is a large increase in total power radiated through a closed surface containing the dimer system, in comparison to the isolated fluorophore and the case of a fluorophore near a single nanoparticle. The increase in radiated power indicates increases in the relative radiative decay rates of the emission near the nanoparticles. The angle-resolved far-field distributions of the emission in a single plane are also computed. This is informative as many experimental conditions involve collection optics and detectors that collect the emission along a single plane. For fluorophores oriented perpendicular to the metal surfaces, the dimer systems lead to significant enhancements in the fluorescence emission intensity in the plane. In contrast, significant emission quenching occurs if the fluorophores are oriented parallel to the metal surfaces. We also examine the effect of the fluorophore on the near-field around the nanoparticles and correlate our results with surface plasmon excitations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available