4.6 Article

Surface modification of TiO2 by phosphate:: Effect on photocatalytic activity and mechanism implication

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 15, Pages 5993-6001

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp712049c

Keywords

-

Ask authors/readers for more resources

Phosphate modified TiO2 photocatalysts were prepared by phosphoric acid treatment before or after TiO2 crystallization. Substrates with different structures were chosen to explore the photocatalytic activity of as-modified TiO2 under UV irradiation. It was found that the effect of phosphate modification is definitely attributed to the surface-bound phosphate anion, and the modification by phosphate can affect both the rates and pathways of photocatalytic reactions, which are of great dependence on the structures and properties of substrates. The degradation of substrates (such as 4-chloropehenol, phenol, and rhodamine B) with weak adsorption on the pure TiO2 was markedly accelerated by phosphate modification, while substrates (such as dichloroacetic acid, alizarin red, and catechol) with strong adsorption exhibited a much lower degradation rate in the phosphate modified system. A much higher amount of hydroxyl radical was produced in phosphate modified system. All of the experimental results imply that phosphate modification largely accelerates the hydroxyl radical attack, but hinders the direct hole oxidation pathway. A common operating mechanism for the phosphate modification, which can be applicable to other inert anions, is also discussed from the viewpoint of an anion-induced negative electrostatic field in the surface layer of TiO2 and the hydrogen bond between modification anion and H2O molecule.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available