4.6 Article

One-step synthesis and characterization of ultrastable and amorphous Fe3O4 colloids capped with cysteine molecules

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 39, Pages 15429-15438

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp805090y

Keywords

-

Ask authors/readers for more resources

A one-step sonochemical synthesis of a uniformly dispersed aqueous solution of amorphous Fe3O4 nanoparticles capped with DL-cysteine (cys) has been achieved. During the sonication, several processes or chemical reactions occurred: the decomposition of iron pentacarbonyl (Fe(CO)(5)), the formation of amorphous Fe3O4 nanoparticles, the capping of the Fe3O4 with cysteine molecules, the formation of a surface chemical bond of Fe-S between Fe3O4 particles and sulfur from cysteine, and the formation of cystine by linking two cysteine molecules. These capping cystine and cysteine molecules acted both as antioxidants and stabilizers, and the capped Fe3O4 colloids could be stable as long as 3 months at room temperature. Usually, the size of the amorphous Fe3O4 nanoparticles capped with Cys was found to be 20-30 nm. The products were characterized by a number of analytical techniques, such as XRD, DSC, TGA, XPS, TEM, HRTEM, Raman Spectroscopy, magnetic measurements, and spot tests.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available