4.6 Review

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 48, Pages 18737-18753

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp806791s

Keywords

-

Funding

  1. Office of Basic Energy Sciences of the U.S. Department of Energy

Ask authors/readers for more resources

The emergence of semiconductor nanocrystals as the building blocks of nanotechnology has opened up new ways to utilize them in next generation solar cells. This paper focuses on the recent developments in the utilization of semiconductor quantum dots for light energy conversion. Three major ways to utilize semiconductor dots in solar cell include (i) metal-semiconductor or Schottky junction photovoltaic cell (ii) polymer-semiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell. Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. Various strategies to maximize photoinduced charge separation and electron transfer processes for improving the overall efficiency of light energy conversion are discussed. Capture and transport of charge carriers within the semiconductor nanocrystal network to achieve efficient charge separation at the electrode surface remains a major challenge. Directing the future research efforts toward utilization of tailored nanostructures will be an important challenge for the development of next generation solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available