4.6 Article

Ni@Pt core-shell nanoparticles: Synthesis, structural and electrochemical properties

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 5, Pages 1645-1649

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp709886y

Keywords

-

Ask authors/readers for more resources

Core-shell nanoparticles composed of a nonnoble metal core and a noble metal shell are of great significance in many areas including chemical catalysis, optical detection, and magnetic separation. Through a modification of the commonly used polyol process, Ni@Pt core-shell nanoparticles that are less than 10 nm in total size and have a very thin Pt shell can be fabricated by a sequential reduction approach. The prepared core-shell nanoparticles were characterized with TEM, XRD, molecular dynamics (MD) simulations, and electrochemical method. It was found that these core-shell particles exhibit the structural characteristics of fcc Ni nanocrystals with a slightly expanded lattice constant but the electrochemical properties of a Pt surface with a significantly shortened Pt-Pt interatomic distance than for pure Pt nanoparticles. The structural characteristics of the prepared core-shell particles revealed by the TEM, XRD, and electrochemical analyses were well verified by. MD simulations of a Ni@Pt core-shell particle with a monolayer Pt shell. It is believed that the prepared Ni@Pt core-shell nanoparticles could be promising cathode catalysts in PEM fuel cells with much reduced Pt content but significantly increased catalytic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available