4.6 Article

All optical full adder based on intramolecular electronic energy transfer in the rhodamine-azulene bichromophoric system

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 40, Pages 15880-15885

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp804658b

Keywords

-

Ask authors/readers for more resources

Charge and electronic energy transfer (ET and EET) are well-studied examples whereby different molecules can signal their state from one (the donor, D) to the other (the acceptor, A). The electronic energy transfer from the donor (Rh) to the acceptor (Az) is used to build an all-optical full adder on a newly synthesized bichromophoric molecule Rh-Az. The results are supported and interpreted by a full kinetic simulation. It is found that the optimal design for the implementation of the full adder relies in an essential way on the intramolecular transfer of information from the donor to the acceptor moiety. However, it is not the case that the donor and the acceptor each act as a half adder.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available