4.6 Letter

Resistive switching in organic memories with a spin-coated metal oxide nanoparticle layer

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 14, Pages 5254-5257

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp800624u

Keywords

-

Ask authors/readers for more resources

Resistive switching is demonstrated in diodes based on spin-coated layers of nanoparticles of Al2O3, CeO2, TiO2, ZrO2, Y2O3, or ZnO and a semiconducting polymer sandwiched between two electrodes. Inclusion of the metal oxide nanoparticles results in nonvolatile electronic memory characteristics that are similar to those observed for the corresponding bulk oxide. The major difference is that the nanoparticulate layers do not require a forming step. ZnO and TiO2 can be switched between a high and low resistance state using voltages pulses of opposite polarity, and Al2O3, CeO2, ZrO2, Y2O3 can be switched with both bipolar and unipolar voltage pulses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available