4.6 Article

Water Vapor Adsorption Effect on Silica Surface Electrostatic Patterning

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 44, Pages 17193-17199

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp803812p

Keywords

-

Funding

  1. FAPESP, Pronex/ Finep/MCT, and PADCT/CNPq

Ask authors/readers for more resources

This work verifies a model for the creation and dissipation of reproducible electric potential patterns on silica surfaces, based on water adsorption, ionization, and ion migration under applied electric potential. Samples were thin silica films grown on silicon wafers and partially covered with sets of parallel gold stripe interdigitated electrodes that are normally used for Kelvin force microscope calibration. Noncontact electric potential measurements with a 20 nm spatial resolution were done using the Kelvin method under controlled atmosphere, in an atomic force microscope (AFM) with a Kelvin force attachment (KFM) mounted within an environmental chamber. Patterns were observed in micrographs acquired while one electrode set was biased and the other was grounded and when both were short-circuited and grounded. Electrostatic charging and discharging are much faster at high relative humidity, showing that the charged or discharged silica states are both changed faster under high humidity, while pattern preservation is effective under low humidity. The results are explained considering surface conductance and the partitioning of water cluster ions both in the solid-gas interfaces and the atmosphere, under the biased electrode potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available