4.6 Article

Short hydrogen bonds at the water/TiO2 (anatase) interface

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 112, Issue 35, Pages 13579-13586

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp8031176

Keywords

-

Funding

  1. CINECA

Ask authors/readers for more resources

The nature of peculiar, short H bonds formed by water molecules in contact with the (101) anatase surface and their effects on the structural and vibrational properties of the first water layers adsorbed on the same surface have been investigated by performing density functional theory (DFT) total energy calculations and ab initio molecular dynamics (AIMD) simulations at different temperatures. Present results show that these short H bonds originate from a water/anatase interface effect related to an electronic charge transfer from surface Ti atoms to surface O atoms, mediated by water molecules. Further, AIMD simulations per-formed at low temperature indicate that such short H bonds are at the ground of both the atomic arrangements of the water layers and the peculiar features appearing in the corresponding vibrational spectra. The same interface effect significantly influences also the atomic arrangements and the vibrational properties of intermediates of the O-2 photoreduction reaction, which turn out to be involved in similar charge transfer processes as well as in the formation of short H bonds. AIMD simulations show that these short H bonds are still present at room temperature and give estimates of the vibrational frequencies of the same intermediates, which are in a quite good agreement with the experimental findings. Such an agreement supports the unifying theoretical picture proposed here for water molecules and O-2 photoreduction intermediates in contact with the anatase surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available