4.7 Article

State transitions and decoherence in the avian compass

Journal

PHYSICAL REVIEW E
Volume 91, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.91.052709

Keywords

-

Funding

  1. Department of Electronics and Information Technology through the Centre of Excellence in Nanoelectronics at IIT Bombay

Ask authors/readers for more resources

The radical pair model has been successful in explaining behavioral characteristics of the geomagnetic compass believed to underlie the navigation capability of certain avian species. In this study, the spin dynamics of the radical pair model and decoherence therein are interpreted from a microscopic state transition point of view. This helps to elucidate the interplay between the hyperfine and Zeeman interactions that enables the avian compass and clarify the distinctive effects of nuclear and environmental decoherence on it. Three regimes have been identified for the strength of the hyperfine interaction with respect to that of the geomagnetic Zeeman. It is found that the compass is likely to function in the large hyperfine interaction regime. Using a quantum information theoretic quantifier of coherence, we find that nuclear decoherence induces new structure in the spin dynamics for intermediate hyperfine interaction strength. On the other hand, environmental decoherence-modeled by two different noise models-seems to disrupt the compass action.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available