4.5 Article

Molecular Dynamics Simulations of DPPC/CTAB Mono layers at the Air/Water Interface

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 118, Issue 40, Pages 11723-11737

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp5050892

Keywords

-

Funding

  1. Waterloo Institute for Nanotechnology Nanofellowship program
  2. University of Waterloo
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

An atomistic-level understanding of cationic lipid monolayers is essential for development of gene delivery agents based on cationic micelle-like structures. We employ molecular dynamics (MD) simulations for a detailed atomistic study of lipid monolayers composed of both pure zwitterionic dipalmitoylphosphatidylcholine (DPPC) and a mixture of DPPC and cationic cetyltrimethylammonium bromide (CTAB) at the air/water interface. We aim to investigate how the composition of the DPPC/CTAB monolayers affects their structural and electrostatic properties in the liquid-expanded phase. By varying the molar fraction of CTAB, we found the cationic CTAB lipids have significant condensing effect on the DPPC/CTAB monolayers, i.e., at the same surface tension or surface pressure, monolayers with higher CTAB molar fraction have smaller area per lipid. The DPPC/CTAB monolayers are also able to achieve negative surface tension without introducing buckling into the monolayer structure. We also found the condensing effect is caused by the interplay between the cationic CTAB headgroups and the zwitterionic phosphatidylcholine (PC) headgroups which has electrostatic origin. With CTAB in its vicinity, the PN vector of PC headgroups reorients from being parallel to the monolayer plane to a more vertical orientation. Moreover, detailed analysis of the structural properties of the monolayers, such as the density profile analysis, hydrogen bonding analysis, chain order parameter calculations, and radial distribution function calculations were also performed for better understanding of cationic DPPC/CTAB monolayers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available