4.5 Article

Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads Containing a Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 118, Issue 6, Pages 1630-1647

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp411629m

Keywords

-

Funding

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG02-05ER15660, DE-FG02-05ER15661, DE-FG02-96ER14632]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001035]

Ask authors/readers for more resources

The synthesis, photophysical, redox, and molecular-orbital characteristics of three perylene-tetrapyrrole dyads were investigated to probe the efficacy of the arrays for use as light-harvesting constituents. Each dyad contains a common perylene-monoimide that is linked at the N-imide position via an arylethynyl group to the meso-position of the tetrapyrrole. The tetrapyrroles include a porphyrin, chlorin, and bacteriochlorin, which have zero, one, and two reduced pyrrole rings, respectively. The increased pyrrole-ring reduction results in a progressive red shift and intensification of the lowest-energy absorption band, as exemplified by benchmark monomers. The arylethyne linkage affords moderate perylene-tetrapyrrole electronic coupling in the dyads as evidenced by the optical, molecular-orbital, and redox properties of the components of the dyads versus the constituent parts. All three dyads in nonpolar solvents exhibit relatively fast (subpicosecond) energy transfer from the perylene to the tetrapyrrole. Competing charge-transfer processes are also absent in nonpolar solvents, but become active for both the chlorin and bacteriochlorin-containing dyads in polar solvents. Calculations of energy-transfer rates via the Forster, through-space mechanism reveal that these rates are, on average, 3-fold slower than the observed rates. Thus, the Dexter through-bond mechanism contributes more substantially than the through-space mechanism to energy transfer in the dyads. The electronic communication between the perylene and tetrapyrrole falls in a regime intermediate between those operative in other classes of perylene tetrapyrrole dyads that have previously been studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available