4.5 Article

In Situ Reactive Compatibilization of Polypropylene/Ethylene-Propylene-Diene Monomer Thermoplastic Vulcanizate by Zinc Dimethacrylate via Peroxide-Induced Dynamic Vulcanization

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 117, Issue 36, Pages 10619-10628

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp404427w

Keywords

-

Ask authors/readers for more resources

This work demonstrates an approach of in situ reactive compatibilization between polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) by using zinc dimethacrylate (ZDMA) as a compatibilizer and, simultaneously, as a very strong reinforcing agent. With the incorporation of 7phr ZDMA in the PP/EPDM (30/70, w/w) thermoplastic vulcanizate (TPV), the tensile strength, tear strength, elongation at break, and hardness of PP/EPDM/ZDMA TPV were increased from 5.3 MPa, 31.3 kN/m, 222%, and 78 up to 11.2 MPa, 64.2 kN/m, 396%, and 83, respectively. This tremendous reinforcing as well as the compatibilization effect of the ZDMA was understood by polymerization of ZDMA and ZDMA reacted with EPDM and PP during peroxide-induced dynamic vulcanization. A peculiar phase structure that rubber particles were surrounded and bonded by a thick transition zone that contained numerous of nanoparticles with dimensions of about 20-30 nm was observed from transmission electron microscopy. Scanning electron microscopy results confirmed that incorporation of ZDMA reduced the size of the crosslinked EPDM particles. Moreover, we found that the compatibilized TPV showed a higher tan delta peak temperature for EPDM phase and a lower tan delta peak temperature for PP phase. The suggested method for in situ reactive compatibilization of PP and EPDM offers routes to the design of new TPV-based technical products for diversified applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available