4.5 Article

Salting-in with a Salting-out Agent: Explaining the Cation Specific Effects on the Aqueous Solubility of Amino Acids

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 117, Issue 20, Pages 6116-6128

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp4021307

Keywords

-

Funding

  1. Fundacao para a Ciencia e a Tecnologia for Programa Ciencia [SFRH/BPD/44926/2008]
  2. FEDER through COMPETE - Programa Operacional Factores de Competitividade and by FCT - Fundacao para a Ciencia e a Tecnologia [PEst-C/EQB/LA0020/2011, PEst-C/CTM/LA0011/2011]
  3. Fundação para a Ciência e a Tecnologia [SFRH/BPD/44926/2008] Funding Source: FCT

Ask authors/readers for more resources

Although the understanding of ion specific effects on the aqueous solubilities of biomolecules is crucial for the development of many areas of biochemistry and life sciences, a consensual and well-supported molecular picture of the phenomena has not yet been established. Mostly, the influence of cations and the nature of the molecular interactions responsible for the reversal of the Hofmeister trend in aqueous solutions of amino acids and proteins are still defectively understood. Aiming at contributing to the understanding of the molecular-level mechanisms governing the cation specific effects on the aqueous solubilities of biocompounds, experimental solubility measurements and classical molecular dynamics simulations were performed for aqueous solutions of three amino acids (alanine, valine, and isoleucine), in the presence of a series of inorganic salts. The evidence gathered suggests that the mechanism by which salting-in inducing cations operate in aqueous solutions of amino acids is different from that of anions, and allows for a novel and Consistent molecular description of the effect of the cation on the solubility based on specific interactions of the cations with the negatively charged moieties of the biomolecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available