4.7 Article

Dusty plasma cavities: Probe-induced and natural

Journal

PHYSICAL REVIEW E
Volume 91, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.91.063105

Keywords

-

Funding

  1. Division Of Physics
  2. Direct For Mathematical & Physical Scien [1414523] Funding Source: National Science Foundation

Ask authors/readers for more resources

A comprehensive exploration of regional dust evacuation in complex plasma crystals is presented. Voids created in three-dimensional crystals on the International Space Station have provided a rich foundation for experiments, but cavities in dust crystals formed in ground-based experiments have not received as much attention. Inside a modified Gaseous Electronics Conference rf cell, a powered vertical probe was used to clear the central area of a dust crystal, producing a cavity with high cylindrical symmetry. Cavities generated by three mechanisms are examined. First, repulsion of micrometer-sized particles by a negatively charged probe is investigated. A model of this effect developed for a dc plasma is modified and applied to explain experimental data in rf plasma. Second, the formation of natural cavities is surveyed; a radial ion drag proposed to occur due to a curved sheath is considered in conjunction with thermophoresis and a flattened confinement potential above the center of the electrode. Finally, cavity formation upon increasing the probe potential above the plasma floating potential is justified by a combination of ion drag and sheath edge modification. The cavities produced by these methods appear similar, but each is shown to be facilitated by fundamentally different processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available