4.5 Article

Understanding the Binding Mechanism of Various Chiral SWCNTs and ssDNA: A Computational Study

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 116, Issue 51, Pages 14754-14759

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp305894c

Keywords

-

Funding

  1. DST
  2. CSIR (Govt. of India)
  3. DST (Government of India)
  4. AOARD, US Air Force

Ask authors/readers for more resources

Molecular dynamics (MD) simulations have been carried out to understand the binding mechanism of various chiral single-walled carbon nanotubes (SWCNTs) and single-stranded DNA (ssDNA) of four different nucleobase sequences (i.e., ssdA(14), ssdT(14), ssdG(14), and ssdC(14), where, A, T, G, and C are adenine, thymine, guanine, and cytosine, respectively) in aqueous media at room temperature (300 K) and atmospheric pressure (1 atm). The simulations studies reveal that ssDNA undergoes rapid structural changes and wrap around the SWCNTs via pi-stacking interactions between SWCNT's wall and the nucleobases of ssDNA. Our computations demonstrate that the length of the ssDNA plays an important role during the wrapping process. Moreover, it suggests that the length of the sequence should be proportional to the diameter of the SWCNT, in order to overcome the intralocked pi-stacking interactions between the nucleobases of ssDNA sequence. Also, in our classical MD simulation, we do not observe the correlation between the diameter of SWCNTs and the sequences of ssDNA, which indicates the importance of electronic factors of these systems. In order to understand the electronic contributions of these systems, the quantum calculations have been performed at Hartree-Fock level for the 17 ns MD simulated structures. The quantum chemical calculations provide evidence that the highly stable ssDNA@SWCNT hybrid possesses a larger HOMO-LUMO gap.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available