4.5 Article

The Central Role of Gln63 for the Hydrogen Bonding Network and UV-Visible Spectrum of the AppA BLUF Domain

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 116, Issue 28, Pages 8064-8073

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp3028758

Keywords

-

Funding

  1. Max Planck Society
  2. Volkswagenstiftung

Ask authors/readers for more resources

In blue-light sensing using flavin (BLUF) domains, the side-chain orientation of key residues close to the flavin chromophore is still under debate. We report quantum refinements of the wild-type AppA BLUF protein from Rhodobacter sphaeroides starting from two published X-ray structures (1YRX and 2IYG) with different arrangements of the residues around the chromophore. Quantum refinement uses the same experimental X-ray raw data as conventional refinement, but includes data from quantum mechanics/molecular mechanics (QM/MM) calculations as restraints, which is expected to be more reliable than the normally employed MM data. In addition to quantum refinement, pure QM/MM geometry optimizations are performed for the 1YRX and 2IYG structures and for five models derived therefrom. Vertical excitation energies are computed at the QM(DFT/MRCI)/MM level to assess the resulting structures. The experimental absorption maximum of the dark state of wild-type AppA is well reproduced for structures that contain the Gln63 residue in 1YRX-type orientation. The computed excitation energies are red-shifted for structures with a flipped Gln63 residue in 2IYG-type orientation. The calculated 1YRX- and 2IYG-type hydrogen-bonding networks are discussed in detail, particularly with regard to the orientation of the chromophore and the Gln63, TrpI04, and Met106 residues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available