4.7 Article

Exponential system-size dependence of the lifetime of transient spiral chaos in excitable and oscillatory media

Journal

PHYSICAL REVIEW E
Volume 92, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.92.062915

Keywords

-

Funding

  1. JSPS
  2. CREST, JST

Ask authors/readers for more resources

Excitable media can develop spiral chaos, in which the number of spirals changes chaotically with time. Depending on parameter values in dynamical equations, spiral chaos may permanently persist or spontaneously arrive at a steady state after a transient time, referred to as the lifetime. Previous numerical studies have demonstrated that the lifetime of transient spiral chaos increases exponentially with system size to a good approximation. In this study, using the fact that the number of spirals obeys a Gaussian distribution, we provide a general expression for the system size dependence of the lifetime for large system sizes, which is indeed exponential. We confirm that the expression is in good agreement with numerically obtained lifetimes for both excitable and oscillatory media with parameter sets near the onset of transient chaos. The expression we develop for the lifetime is expected to be useful for predicting lifetimes in large systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available