4.5 Article

DNA Origami Metallized Site Specifically to Form Electrically Conductive Nanowires

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 116, Issue 35, Pages 10551-10560

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp302316p

Keywords

-

Funding

  1. National Science Foundation [CBET-0708347]

Ask authors/readers for more resources

DNA origami is a promising tool for use as a template in the design and fabrication of nanoscale structures. The ability to engineer selected staple strands on a DNA origami structure provides a high density of addressable locations across the structure. Here we report a method using site-specific attachment of gold nanoparticles to modified staple strands and subsequent metallization to fabricate conductive wires from DNA origami templates. We have modified DNA origami structures by lengthening each staple strand in select regions with a 10-base nucleotide sequence and have attached DNA-modified gold nanoparticles to the lengthened staple strands via complementary base-pairing. The high density of extended staple strands allowed the gold nanoparticles to pack tightly in the modified regions of the DNA origami, where the measured median gap size between neighboring particles was 4.1 nm. Gold metallization processes were optimized so that the attached gold nanoparticles grew until gaps between particles were filled and uniform continuous nanowires were formed. Finally, electron beam lithography was used to pattern electrodes in order to measure the electrical conductivity of metallized DNA origami, which showed an average resistance of 2.4 k Omega per metallized structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available