4.5 Article

Hydrodynamic Size-Dependent Cellular Uptake of Aqueous QDs Probed by Fluorescence Correlation Spectroscopy

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 116, Issue 40, Pages 12125-12132

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp305563p

Keywords

-

Funding

  1. Purdue Center for Cancer Research
  2. Clinical and Translational Sciences Institute
  3. National Science Foundation (NSF) [0945771]
  4. Indo-US Knowledge Network grant
  5. Direct For Biological Sciences
  6. Div Of Molecular and Cellular Bioscience [0945771] Funding Source: National Science Foundation

Ask authors/readers for more resources

Aqueous quantum dots (QDs) directly synthesized with various thiol ligands have been investigated as imaging probes in living cells. However, the effect of the surface chemistry of these ligands on QDs' cellular uptakes and their intracellular fate remains poorly understood. In this work, four CdTe QDs were directly synthesized under aqueous conditions using four different thiols as stabilizers and their interactions with cells were investigated. Fluorescence correlation spectroscopy (FCS), X-ray photoelectron spectroscopy (XPS), and zeta potential measurements on QDs primarily show that the surface structure of these QDs is highly dependent on the thiol ligands used in the preparation of QDs' precursors, including its layer thicknesses, densities, and surface charges. Subsequently, FCS integrated with the maximum-entropy-method-based FCS (MEMFCS) was used to investigate the concentration distribution and dynamics of these QDs in living A-427 cells. Our findings indicate that QDs' surface characteristics affect cell membrane adsorption and subsequent internalization. More critically, we show that the cellular uptake of aqueous QDs is dependent on their hydrodynamic diameter and might have the potential to escape trapped environments to accumulate in the cytoplasm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available