4.5 Article

Dynamics of Colloids in Single Solid-State Nanopores

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 115, Issue 12, Pages 2890-2898

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp200326w

Keywords

-

Funding

  1. ANR [BLAN08-1_339991, ANR-06-NANO-028]

Ask authors/readers for more resources

We use solid-state nanopores to study the dynamics of single electrically charged colloids through nanopores as a function of applied voltage. We show that the presence of a single colloid inside of the pore changes the pore resistance, in agreement with theory. The normalized ionic current blockade increases with the applied voltage and remains constant when the electrical force increases even more. We observe short and long events of current blockades. Their durations are associated, respectively, with low and high current variation. The ratio of long events increases with the electrical force. The events frequency increases exponentially as a function of applied voltage and saturates at high voltage. The dwelling time decreases exponentially at low and medium voltages when the electrical force increases. At large voltages, this time decreases inversely proportionally to the applied voltage. The long events are associated with translocation events. We show that the dynamics of colloids through the nanopore is governed mainly by two mechanisms, by the free-energy barrier at relatively low and medium voltages and by the electrophoresis mechanism at high voltage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available