4.5 Article

Development of an Optimized Intermolecular Potential for Sulfur Dioxide

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 115, Issue 17, Pages 4949-4954

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp2010524

Keywords

-

Funding

  1. Wayne State University
  2. NSF [CBET-0730768]
  3. ORISE/ORAU

Ask authors/readers for more resources

A new force field for sulfur dioxide, capable of predicting accurately the vapor-liquid equilibria, critical properties, vapor pressure, and heats of vaporization is presented. The new force field reproduces the saturated liquid densities, vapor pressures and heats of vaporization to within 0.5, 2, and 2% of experiment, respectively. The predicted critical properties and the normal boiling point are in excellent agreement with experimental results. Pair distribution functions are calculated for the S S, S-O, and O-O interactions are in close agreement with neutron and X-ray scattering experiments. In addition to the new force field, similar calculations are performed for four SO2 intermolecular potentials proposed by Sokolic et al. (Sokolic, F.; Guissani, Y.; Guillot, B. J. Phys. Chem. 1985, 89, 3023], which show that these models work reasonably well near the state point where they were originally parametrized, but large errors in the predicted coexistence properties are displayed at higher and lower temperatures. Comparison of the radial distribution functions show the local structure is only weakly affected by the different force field parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available