4.5 Article

FTIR Spectroscopy Studies on the Bioprotective Effectiveness of Trehalose on Human Hemoglobin Aqueous Solutions under 50 Hz Electromagnetic Field Exposure

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 114, Issue 37, Pages 12144-12149

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp104226p

Keywords

-

Ask authors/readers for more resources

The effects of extremely low frequency electromagnetic field on the protein structure of hemoglobin were investigated by means of Fourier transform infrared spectroscopy. Three samples of different hemoglobin aqueous solutions (also in the presence of sucrose and trehalose) were exposed to a 50 Hz electromagnetic field at 1 mT, and FTIR measurements were performed after 3 h of exposure. Quantitative spectral analysis revealed an evident decrease in amide A band intensity for hemoglobin in bidistilled water and sucrose aqueous solutions, but not for hemoglobin in trehalose aqueous solution. In addition a low relative increase of beta-sheet in amide I region was detected for hemoglobin in both bidistilled water and sucrose aqueous solutions, whereas no appreciable changes were evidenced in the infrared spectra of hemoglobin in trehalose aqueous solutions. These results led us to conclude that a 50 Hz electromagnetic field can affect the N-H plane bending and C-N stretching vibrations of peptide linkages, suggesting compensatory mechanisms by means of environmental biochemical agents, such as evidenced by a protective effect of trehalose toward a low-frequency electromagnetic field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available