4.5 Article

Redox Mechanism of Glycosidic Bond Hydrolysis Catalyzed by 6-Phospho-α-glucosidase: A DFT Study

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 114, Issue 34, Pages 11196-11206

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp102399h

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. SHARCNET

Ask authors/readers for more resources

Glycosidic bonds are remarkably resistant to cleavage by chemical hydrolysis. Glycoside hydrolases catalyze their selective hydrolysis in oligosaccharides, polysaccharides, and glycoconjugates by following nonredox catalytic pathways or a net redox-neutral catalytic pathway using NAD(+) and divalent metal ions as cofactors. GlvA (6-phospho-alpha-glucosidase) is a glycosidase belonging to family GH4 and follows a regioselective redox-neutral mechanism of glycosidic-bond hydrolysis that favors alpha- over beta-glycosides. Its proposed catalytic mechanism can be divided into two half-reactions: the first one activates the glucopyranose ring by successively forming intermediates that are oxidized at the 3-, 2-, and 1-positions of the ring, which ultimately facilitate the heterolytic deglycosylation. The second half-reaction is essentially the reverse of the first half-reaction, beginning with the pyranose ring hydroxylation at the anomeric carbon, and it is followed by 3-reduction and regeneration of the active forms of the catalytic site and its cofactors. We investigated the NAD(+)-dependent redox mechanism of glycosidic bond hydrolysis as catalyzed by GlvA through the combined application of density functional theory and a self-consistent reaction field to a large active-site model obtained from the crystallographic structure of the enzyme, then we applied natural bond orbital and second-order perturbation analyses to monitor the electron flow and change in oxidation state on each atomic center along the reaction coordinate to rationalize the energetics and regioselectivity of this catalytic mechanism. We find that in GlvA, the redox catalytic mechanism of hydrolysis is driven by the gradual strengthening of the axial endo-anomeric component within the hexose ring along the reaction coordinate to facilitate the heterolytic dissociation of the axial C1-O bond. In addition, the combined influence of specific components of the generalized anomeric effect fully explains the regioselectivity observed in the catalytic activity of GlvA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available