4.5 Article

Influence of Lysine Nε-Trimethylation and Lipid Composition on the Membrane Activity of the Cecropin A-Melittin Hybrid Peptide CA(1-7)M(2-9)

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 114, Issue 49, Pages 16198-16208

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp106915c

Keywords

-

Funding

  1. FCT
  2. Unidade de Investigacao 81
  3. CRUP
  4. MICINN [E40/09]
  5. European Union [HEALTH-2007-223414]
  6. Spanish Ministry of Science and Innovation [PET2006-0139, BIO2005-07592-CO2-02, BIO200804487-CO3-02]
  7. Fondo de Investigaciones Sanitarias [PI061125, PS09-01928, RD06/0021/0006, PI040885]
  8. regional governments of Madrid [S-BIO-0260/2006]
  9. Catalonia [SGR2005-00494]

Ask authors/readers for more resources

Although many studies have pointed out the promising role of antimicrobial peptides (AMPs) as therapeutical agents, their translation into clinical research is being slow due to the limitations intrinsic to their peptide nature. A number of structural modifications to overcome this problem have been proposed, leading to enhanced AMP biological lifetimes and therapeutic index. In this work, the interaction between liposomes of different lipidic composition and a set of lysine N-epsilon-trimethylated analogs of the cecropin A and melittin hybrid peptide, CA(1-7)M(2-9) [H-KWKLFKKIGAVLKVL-amide], was studied by differential scanning calorimetry (DSC) and fluorescence spectroscopy. The study was carried out using membrane models for mammalian erythrocytes (zwitterionic lipids) and for bacteria (mixture of zwitterionic and negatively charged lipids). The results show that trimethylated peptides interact strongly with negatively charged (bacterial cell model) but not with zwitterionic (erythrocyte model) liposomes. These results arc in agreement with the reduction of cytotoxicity and ensuing improvement in therapeutic index vs parental CA(1-7)M(2-9) found in a related study. Moreover, the modified peptides act differently depending on the model membrane used, providing further evidence that the lipid membrane composition has important implications on AMP membrane activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available