4.7 Article

P-V criticality in the extended phase space of black holes in massive gravity

Journal

PHYSICAL REVIEW D
Volume 91, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.91.124033

Keywords

-

Funding

  1. National Natural Science Foundation of China [11205148, 11235010, 11105004]
  2. Fundamental Research Funds for the Central Universities [NS2015073]
  3. Shanghai Key Laboratory of Particle Physics and Cosmology [11DZ2260700]

Ask authors/readers for more resources

We study the P-V criticality and phase transition in the extended phase space of charged anti-de Sitter black holes in canonical ensemble of ghost-free massive gravity, where the cosmological constant is viewed as a dynamical pressure of the black hole system. We give the generalized thermodynamic first law and the Smarr relation with massive gravity correction. We find that not only when the horizon topology is spherical but also in the Ricci flat or hyperbolic case, there appear the P-V criticality and phase transition up to the combination k + c(0)(2)c(2)m(2) in the four-dimensional case, where k characterizes the horizon curvature and c(2)m(2) is the coefficient of the second term of massive potential associated with the graviton mass. The positivity of such combination indicate the van der Waals-like phase transition. When the spacetime dimension is larger then four, the Maxwell charge there seems unnecessary for the appearance of critical behavior, but a infinite repulsion effect needed, which can also be realized through negative valued c(3)m(2) or c(4)m(2), which is third or fourth term of massive potential. When c(3)m(2) is positive, a Hawking-Page-like black hole to vacuum phase transition is shown in the five-dimensional chargeless case. For the van der Waals-like phase transition in four and five spacetime dimensions, we calculate the critical exponents near the critical point and find they are the same as those in the van der Waals liquid-gas system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available