4.5 Article

Reaction Mechanism of Manganese Superoxide Dismutase Studied by Combined Quantum and Molecular Mechanical Calculations and Multiconfigurational Methods

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 113, Issue 17, Pages 6074-6086

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp810247u

Keywords

-

Funding

  1. Ministry of Education, Youth and Sports of the Czech Republic [Z40550506, LC512]
  2. Swedish Research Council (UR)

Ask authors/readers for more resources

Manganese superoxide dismutases (MnSODs) are enzymes that convert two molecules of the poisonous superoxide radical into molecular oxygen and hydrogen peroxide. During the reaction, the manganese ion cycles between the Mn2+ and Mn3+ oxidation states and accomplishes its enzymatic action in two half-cycles (corresponding to the oxidation and reduction of O-2(center dot-)). Despite many experimental and theoretical studies dealing with SODs, including quantum chemical active-site-model studies of numerous variants of the reaction mechanisms, several details of MnSOD enzymatic action are still unclear. In this study, we have modeled and compared four reaction pathways (one associative, one dissociative, and two second-sphere) in a protein environment using the QM/MM approach (combined quantum and molecular mechanics calculations) at the density functional theory level. The results were complemented by CASSCF/CASPT2/MM single-point energy calculations for the most plausible models to account properly for the multireference character of the various spin multiplets. The results indicate that the oxidation of O-2(center dot-) to O-2 most likely occurs by an associative mechanism following a two-state (quartet-octet) reaction profile. The barrier height is estimated to be less than 25 kJ.mol(-1). On the other hand, the conversion of O-2(center dot-) to H2O2 is likely to take place by a second-sphere mechanism, that is, without direct coordination of the superoxide radical to the manganese center. The reaction pathway involves the conical intersection of two quintet states, giving rise to an activation barrier of similar to 60 kJ.mol(-1). The calculations also indicate that the associative mechanism can represent a competitive pathway in the second half-reaction with the overall activation barrier being only slightly higher than the activation barrier in the second-sphere mechanism. The activation barriers along the proposed reaction pathways are in very good agreement with the experimentally observed reaction rates of SODs (k(cat) approximate to 10(4)-10(5) s(-1)).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available