4.5 Article

Contact Angle Hysteresis Generated by Strong Dilute Defects

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 113, Issue 12, Pages 3906-3909

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp8066876

Keywords

-

Ask authors/readers for more resources

Water on solid decorated with hydrophobic defects (such as micropillars) often stays at the top of the defects in a so-called fakir state, which explains the superhydrophobicity observed in such case, provided that the density of defects is small enough. Here we show that this situation provides an ideal frame for studying the contact angle hysteresis; the phase below the liquid is perfect and slippery (it is air), contrasting with pillars' tops whose edges form strong pining sites for the contact line. This model system thus allows us to study the hysteresis as a function of the density of defects and to compare it to the classical theory by Joanny and de Gennes, which is based on very similar hypothesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available