4.5 Article

A Glucose Biosensor Based on Deposition of Glucose Oxidase onto Crystalline Gold Nanoparticle Modified Carbon Nanotube Electrode

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 113, Issue 10, Pages 3190-3194

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp810235v

Keywords

-

Ask authors/readers for more resources

A new amperometric biosensor, based on deposition of glucose oxidase (GOD) onto crystalline gold (Au) nanoparticle modified multiwalled carbon nanotube (MWNT) electrode, is presented. NIWNTs have been synthesized by catalytic chemical vapor decomposition of acetylene over rare-earth-based AB(2) (DyNi2) alloy hydride catalyst. Purified MWNTs have been decorated with nanocrystalline Au metal clusters using a simple chemical reduction method. The characterization of metal-decorated CNTs has been done using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and energy-dispersive X-ray analysis. Amperometric biosensor fabricated by depositing GOD over Nafion-solubilized Au-MWNT electrode retains its biocatalytic activity and offers fast and sensitive glucose quantification. The performance of the biosensor has been studied using cyclic voltammetry, amperometry, and hydrodynamic voltammetry, and the results have been discussed. The fabricated glucose biosensor exhibits a linear response up to 22 mM glucose and a detection limit of 20 mu M.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available